Thursday, December 20, 2012

Can observations of a hardy weed help feed the world?

Can observations of a hardy weed help feed the world? [ Back to EurekAlert! ] Public release date: 20-Dec-2012
[ | E-mail | Share Share ]

Contact: James Ellis
ijps@uchicago.edu
773-702-8292
University of Chicago Press Journals

As the human population increases, so too do the demands and stresses on agriculture. In the January 2013 issue of International Journal of Plant Sciences, Penn State University Waller Professor of Plant Biology Dr. Sarah Assmann explores how the responses to environmental stresses by one small, genetically diverse plant species might illuminate possible approaches to addressing growing human demand for crop products amid decreasing resources.

In the article, Dr. Assmann describes how human population growth presents new challenges to twenty-first-century agriculture, especially since such abiotic stresses as climate change and poor-quality soils can disrupt the ability of many crops to flourish and provide sufficient calories, nutrients, and other resources. According to the U.N.'s Food and Agriculture Organization, the Earth's population will reach nine billion people by the year 2050. To meet the needs of this population, Dr. Assmann says, plant biologists must study how and why some plants are heartier and more capable than others of tolerating these stresses.

Dr. Assmann's focus is on a small flowering plant, a distant cousin of cabbage and canola that can be found growing wild across much of the globe. She explains that this species, Arabidopsis thaliana (also known as mouse-eared cress), is an ideal study system in part because it has not been domesticated. Unlike crops, which for millennia have been selectively refined to express certain traits, Arabidopsis has not been cultivated and thus has not suffered the same loss of genetic diversity. This robust genetic makeup contributes to the plant's tolerance of stresses associated with climate change and rising temperatures: increased carbon dioxide concentrations, drought, salinity, and mineral limitation and toxicity. "Ideally, if we can understand better the genetic diversity of this species, we can begin to explore the possibility of related biotechnological manipulations within crop species," Dr. Assmann says. "Here we have a great opportunity to harness the genetic variation in Arabidopsis to inform crop improvement efforts and ameliorate the effects of climate change on crop yield."

###

The International Journal of Plant Sciences is proud to present Dr. Sarah Assmann's research in its 2013 Coulter Review. The annual Review represents a unique opportunity for scientists working at the forefront of their fields to share their insights and updates on the latest developments in plant biology. The Review is named in honor of John Merle Coulter (1851), the first Head Professor of Botany at the University of Chicago and creator of the journal.

More information about the history of John M. Coulter can be found online at: http://www.press.uchicago.edu/journals/ijps/coulterreview.html?journal=ijps.

Dr. Assmann's article is freely available online ahead of print at: http://www.jstor.org/stable/10.1086/667798 and will be published in the January 2013 issue of the journal.

Sarah M. Assmann, "Natural Variation in Abiotic Stress and Climate Change Responses in Arabidopsis: Implications for Twenty-First Century Agriculture." International Journal of Plant Sciences 174:1 (January 2013). doi:10.1086/667798

The International Journal of Plant Sciences has a distinguished history of publishing research in the plant sciences since 1875. IJPS presents high quality, original, peer-reviewed research from laboratories around the world in all areas of the plant sciences. Topics covered range from genetics and genomics, developmental and cell biology, biochemistry and physiology, to morphology and anatomy, systematics, evolution, paleobotany, plant-microbe interactions, and ecology. In addition to full-length research papers, IJPS publishes review articles, including the open access Coulter Reviews, rapid communications, and perspectives. IJPS welcomes contributions that present evaluations and new perspectives on areas of current interest in plant biology. IJPS publishes nine issues per year and regularly features special issues on topics of particular interest, including new and exciting research originally presented at major botanical conferences.


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Can observations of a hardy weed help feed the world? [ Back to EurekAlert! ] Public release date: 20-Dec-2012
[ | E-mail | Share Share ]

Contact: James Ellis
ijps@uchicago.edu
773-702-8292
University of Chicago Press Journals

As the human population increases, so too do the demands and stresses on agriculture. In the January 2013 issue of International Journal of Plant Sciences, Penn State University Waller Professor of Plant Biology Dr. Sarah Assmann explores how the responses to environmental stresses by one small, genetically diverse plant species might illuminate possible approaches to addressing growing human demand for crop products amid decreasing resources.

In the article, Dr. Assmann describes how human population growth presents new challenges to twenty-first-century agriculture, especially since such abiotic stresses as climate change and poor-quality soils can disrupt the ability of many crops to flourish and provide sufficient calories, nutrients, and other resources. According to the U.N.'s Food and Agriculture Organization, the Earth's population will reach nine billion people by the year 2050. To meet the needs of this population, Dr. Assmann says, plant biologists must study how and why some plants are heartier and more capable than others of tolerating these stresses.

Dr. Assmann's focus is on a small flowering plant, a distant cousin of cabbage and canola that can be found growing wild across much of the globe. She explains that this species, Arabidopsis thaliana (also known as mouse-eared cress), is an ideal study system in part because it has not been domesticated. Unlike crops, which for millennia have been selectively refined to express certain traits, Arabidopsis has not been cultivated and thus has not suffered the same loss of genetic diversity. This robust genetic makeup contributes to the plant's tolerance of stresses associated with climate change and rising temperatures: increased carbon dioxide concentrations, drought, salinity, and mineral limitation and toxicity. "Ideally, if we can understand better the genetic diversity of this species, we can begin to explore the possibility of related biotechnological manipulations within crop species," Dr. Assmann says. "Here we have a great opportunity to harness the genetic variation in Arabidopsis to inform crop improvement efforts and ameliorate the effects of climate change on crop yield."

###

The International Journal of Plant Sciences is proud to present Dr. Sarah Assmann's research in its 2013 Coulter Review. The annual Review represents a unique opportunity for scientists working at the forefront of their fields to share their insights and updates on the latest developments in plant biology. The Review is named in honor of John Merle Coulter (1851), the first Head Professor of Botany at the University of Chicago and creator of the journal.

More information about the history of John M. Coulter can be found online at: http://www.press.uchicago.edu/journals/ijps/coulterreview.html?journal=ijps.

Dr. Assmann's article is freely available online ahead of print at: http://www.jstor.org/stable/10.1086/667798 and will be published in the January 2013 issue of the journal.

Sarah M. Assmann, "Natural Variation in Abiotic Stress and Climate Change Responses in Arabidopsis: Implications for Twenty-First Century Agriculture." International Journal of Plant Sciences 174:1 (January 2013). doi:10.1086/667798

The International Journal of Plant Sciences has a distinguished history of publishing research in the plant sciences since 1875. IJPS presents high quality, original, peer-reviewed research from laboratories around the world in all areas of the plant sciences. Topics covered range from genetics and genomics, developmental and cell biology, biochemistry and physiology, to morphology and anatomy, systematics, evolution, paleobotany, plant-microbe interactions, and ecology. In addition to full-length research papers, IJPS publishes review articles, including the open access Coulter Reviews, rapid communications, and perspectives. IJPS welcomes contributions that present evaluations and new perspectives on areas of current interest in plant biology. IJPS publishes nine issues per year and regularly features special issues on topics of particular interest, including new and exciting research originally presented at major botanical conferences.


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2012-12/uocp-coo122012.php

susan g komen kenyon martin kenyon martin big miracle slab city super bowl snacks appleton

No comments:

Post a Comment